按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
这意味着,他们最好从事那些会得到终身教授委员会认可的研究。否则,他们将会听到
这样的话:“你与生化系的学者们干得很努力,但你怎么表明你是物理学这儿的学术带
头人呢?”而年岁大一些的研究人员不得不一睁开眼睛就拼命去争取研究经费。这意味
着,他们不得不把自己的研究计划归整到让基金会可以认同的范畴。否则,他们就会听
到这样的话:“乔,你的主意非常好,但糟糕的是,你的研究计划不属于我们这个部门
管。”每个人都必须争取使自己的论文被权威的学术刊物接受和发表,而这些权威的学
术刊物几乎只登载属于被认可的领域的论文。
考温说,就这样几年折腾下来,强制性的狭隘视野变成了一种不再被人们所意识的
本能。他的经验告诉他,罗沙拉莫斯的研究人员越是沉湎于学术世界,就越是难以让他
们参与团队工作。“我已经与这种状况抗争了三十年了。”他叹道。
然而,当他开始认真思考这个问题时,他感到,最令人沮丧的是这种碎裂的过程对
科学整体的侵害。传统学科已经顽固和相互孤立得好像要自己窒息自己。你视野所及,
到处都有太多的科学良机,但太多的科学工作者似乎对这些漠然无视。
考温想,如果需要例子的话,只需要看看现在正敞开着的机会——晤,他现在还真
无法给这件事想出一个好的名称来。但如果他在罗沙拉莫斯的所见所闻有任何启示的话,
那么,有某件大事正在酝酿之中。在过去的十年中,他越来越感到,传统的还原论的思
维已经走进了死胡同,甚至就连一些核心物理学家也开始对忽视现实世界复杂性的数学
式的抽象感到厌烦。他们好像正在有意无意地探索某种新的方法。在这个过程中,他们
正在以他们过去这些年,甚至这几个世纪都从未有过的方式跨越传统的界线。
但具有讽刺意味的是,他们的灵感似乎是来自于分子生物学。这是大多数人都不会
认为一个武器实验室会感兴趣的领域。但考温说,物理学家从一开始就深深地卷入了分
子生物学。分子生物学领域中的许多开拓者其实刚开始都是物理学家。他们转入分子生
物学的一个很大的驱动力来自于一本薄薄的书,这本书的名字叫《生命是什么?》
(What Is Life)。该书出版于1944年,在这本集子中,奥地利物理学家、量子力学的
发明人之一欧文·薛定谔(ErwinSchrodinger)对生命的物理和化学基础提出了一系列
富有挑战意味的思索。(薛定谔逃出希特勒的魔掌以后,二次大战期间一直安全地隐藏
在都柏林。)深受这本书的影响的人之一是弗朗克斯·克拉克(Francis Crick)。他
在1953年与詹姆斯·华生(James Watson)一起,利用从X光结晶中提取出来的数据推
演出DNA分子结构。X光结晶是早在几十年前物理学家发展出来的一种亚微观的想象技术。
事实上,克拉克起初是学实验物理学出身的。五十年代初,匈牙利理论物理学家、宇宙
起源大爆炸理论的最初提出者之一乔治·加莫(George Gamow)也开始被基因密码结构
所深深吸引了,他鼓动了更多的物理学家投入了这个领域的研究。考温说:“我听到的
第一堂关于生物化学的真正有见解的课就是加莫上的。”
他说,从此分子生物学一直深深吸引着他。特别是七十年代初,DNA重组技术的发
现使生物学几乎能够一个分子一个分子地分析和操纵生命的形式。所以1978年当考温成
为实验室研究中心主持人以后,他就立即开始支持在生化领域的一个重要研究计划。这
项计划在形式上是研究放射线对细胞的伤害,但其实是使罗沙拉莫斯的物理学家在更广
阔的范围内介入分子生物学的研究。他回忆说,那是一个极好的机会。在七十年代,罗
沙拉莫斯在哈罗德·阿基纽(Harold Agnew)的主持下扩大了一倍,而且向更多的非传
统的和应用领域开放。考温对分子生物学的强调正好适宜于当时的情况。结果,他支持
的那个项目对那儿的人们的思想,特别是对他的思想产生了极为重大的影响。
考温说:“从定义上我们差不多可以这样说,物理科学是一门以概念的优雅和分析
的简单为特点的学科。所以你就会以此为优点而看不到其它方面。”确实,物理学家对
社会学和心理学这些致力于探索真实世界的复杂性的“软科学”的轻蔑是众所周知的。
但分子生物学出现了,它是对复杂到不可思议的活系统的描述。这些有生命的系统受着
深层规律的支配。考温说:“一旦你和生物学交上了手,你就放弃了优雅,放弃了简单,
你被搅得乱七八糟。但从这开始,渗入经济学和社会问题就变得容易得多了。一旦你已
经沉入了一半,你也许就此开始游泳。”
与此同时,科学家也开始越来越多地对复杂系统进行思考,因为他们现在已经能够
做这种思考了。当你用笔和纸来解答数学方程式时,你能够对付多少变量,同时又不至
于陷进去出不来?三个?或四个?但当你具有了足够的计算机能力,你可以爱对付多少
变量就对付多少变量。到八十年代初,计算机已经非常普及了。个人电脑大量出现,科
学家们纷纷安装上了台式高效绘图工作站,大企业的实验室和国家实验室如雨后春笋般
地冒了出来。突然间,含有无数变量的无数个方程式看起来没有那么繁杂了。比如,从
救火皮带般长的数据中提取信息不显得那么不可能了,数行数行的数字和几英里长的数
据带可以被转化成以颜色来表示的农作物收成图、或埋在数英里深的石头下的蕴藏石油
的底层带。“计算机是非常好的记帐机器。”考温用很轻描淡写的低调说。
但计算机能做的远远不止记帐。也许经过编程以后,计算机可以变成完全独立的世
界。科学家们可以在计算机上做各种方式的探索,从而大大开阔他们对真实世界的理解。
事实上,到了八十年代,计算机的模拟功能就已经变得非常强大了,有些人甚至已经开
始谈论计算机是介于理论与实验之间的“第三种形式的科学”。比如,计算机模拟的雷
暴雨可以像是一种理论,因为除了描述闪电、风声和水蒸汽声的方程式以外,计算机里
不存在任何别的东西。但这种模拟同时也像是一种实验,因为这些方程式太复杂了,根
本不可能靠人力来解,所以科学家们在自己的计算机上观察模拟雷暴雨时,可以看见他
们的方程式以他们也许根本不可能预测到的方式展开。有时,甚至最简单的方程式也能
产生令人吃惊的行为效果。雷暴雨的数学实际上描述了一阵阵空气如何相互推挤、每一
滴水蒸汽如何凝结、又如何蒸发,以及其他类似的小规模发生的事。这里没有清晰明确
的论述,诸如“一柱上升的气流和雨水冻结成冰雹”,或“一股寒冷而潮湿的下降气流
突然穿透了云层底部,降落到地面。”但当计算机用几英里长的空间和数小时的时间整
合了这些方程式,便产生了计算机所想得到的效果。更有甚者,正是这一事实使科学家
能够用他们的计算机模式来进行实验,而这种实验在真实世界里是无法进行的。究竟是
什么导致气流上升或下降?当气温和湿度改变时,它们又会发生什么样的变化?什么是
真正影响雷暴雨的动力的因素?什么不是?在另外的雷暴雨中,相同的因素会同样重要
吗?
考温说,到了八十年代初,这种数据化的实验已经变得非常普遍了。从新机型的飞
行效果测试、汹涌流入黑洞的星际气流、到大爆炸后银河系的形成——至少在物理科学
家中,计算机模拟的整个概念已经完全被接受了。“所以你可以开始琢磨对付非常复杂
的系统的事儿了。”
但是,复杂的魅力比这还要来得深刻。部分是因为复杂系统可以被计算机模拟,部
分是因为新的数学认识。到八十年代初,科学家开始认识到,许多混乱而复杂的系统可
以被一种强大的理论描述成“非线性动力学”(nonlineardynamics)。在这个过程中,
科学家们被迫面对一个令他们窘困的事实:整体真的可以大于部分相加的总和。
对现在的大多数人来说,这一事实已是显而易见了,但对当时的物理学家们来说却
是非常令他们窘困的,因为物理学家们花费了三百年时间来热爱线性系统。在这个系统
中,整体正好等于所有部分的相加。公平地说,他们有很多理由这么认为。如果在一个
系统中,整体正好等于所有部分的相加,则每一个部分都可以自由地做自己的事,而不
用去管别处发生了什么。这样相对比较容易做数学分析。(“线性”这个词指的是,如
果你把方程式在图表纸上画出来,绘制出来的会是一条直线。)另外,大自然中的许多
事情都是线性运作的。声音是一个线性系统,这就是为什么双簧管和弦乐器合奏,你却
可以将它们单独地分辨出来。因为音波相互混合,但仍然能保持各自的特点。光线也是
一个线性系统,这就是为什么你在大太阳天也可以看到马路对面通行/禁止通行的指示
灯,因为从指示灯射出来的光线进入你的眼帘不会被从高处照射下来的阳光粉碎于地面。
各种光线独立运作、相互穿越,仿佛什么也不存在似的。在某些方面,甚至连经济也是
一个线性系统,比方小经济单位可以独立运作。又比如,某人在街头杂货店买了一张报
纸,这对你去超级市场买一管牙膏的决定不会有什么影响。
然而,大自然中的许多事情确实不是线性的,这包括使这个世界充满趣味的大多数
事情。我们的大脑肯定不是线性的系统:虽然双簧管的声音和弦乐的声音独立地进入你
的耳朵,但这两种